跳转至

pyspark实现ETL操作

利用PySpark处理大数据,执行数据提取、转换、加载操作,实现数据清洗、整合与存储,支持分布式计算

1. Environment Setup and SparkSession Creation

  • Install PySpark: pip install pyspark
  • Start a SparkSession:
    1
    2
    from pyspark.sql import SparkSession
    spark = SparkSession.builder.appName('ETL Process').getOrCreate()
    

2. Data Extraction

  • Read Data from CSV:
    1
    df = spark.read.csv('path/to/csv', inferSchema=True, header=True)
    
  • Read Data from JSON:
    1
    df = spark.read.json('path/to/json')
    
  • Read Data from Parquet:
    1
    df = spark.read.parquet('path/to/parquet')
    
  • Read Data from a Database:
    1
    df = spark.read.format("jdbc").option("url", jdbc_url).option("dbtable", "table_name").option("user", "username").option("password", "password").load()
    

3. Data Transformation

  • Selecting Columns:
    1
    df.select('column1', 'column2')
    
  • Filtering Data:
    1
    df.filter(df['column'] > value)
    
  • Adding New Columns:
    1
    df.withColumn('new_column', df['column'] + 10)
    
  • Renaming Columns:
    1
    df.withColumnRenamed('old_name', 'new_name')
    
  • Grouping and Aggregating Data:
    1
    df.groupBy('column').agg({'column2': 'sum'})
    
  • Joining DataFrames:
    1
    df1.join(df2, df1['id'] == df2['id'])
    
  • Sorting Data:
    1
    df.orderBy(df['column'].desc())
    
  • Removing Duplicates:
    1
    df.dropDuplicates()
    

4. Handling Missing Values

  • Dropping Rows with Missing Values:
    1
    df.na.drop()
    
  • Filling Missing Values:
    1
    df.na.fill(value)
    
  • Replacing Values:
    1
    df.na.replace(['old_value'], ['new_value'])
    

5. Data Type Conversion

  • Changing Column Types:
    1
    df.withColumn('column', df['column'].cast('new_type'))
    
  • Parsing Dates:
    1
    2
    from pyspark.sql.functions import to_date
    df.withColumn('date', to_date(df['date_string']))
    

Advanced Data Manipulations

  • Using SQL Queries:
    1
    2
    df.createOrReplaceTempView('table')
    spark.sql('SELECT * FROM table WHERE column > value')
    
  • Window Functions:
    1
    2
    3
    from pyspark.sql.window import Window
    from pyspark.sql.functions import row_number
    df.withColumn('row', row_number().over(Window.partitionBy('column').orderBy('other_column')))
    
  • Pivot Tables:
    1
    df.groupBy('column').pivot('pivot_column').agg({'column2': 'sum'})
    

7. Data Loading

  • Writing to CSV:
    1
    df.write.csv('path/to/output')
    
  • Writing to JSON:
    1
    df.write.json('path/to/output')
    
  • Writing to Parquet:
    1
    df.write.parquet('path/to/output')
    
  • Writing to a Database:
    1
    df.write.format("jdbc").option("url", jdbc_url).option("dbtable", "table_name").option("user", "username").option("password", "password").save()
    

8. Performance Tuning

  • Caching Data:
    1
    df.cache()
    
  • Broadcasting a DataFrame for Join Optimization:
    1
    2
    from pyspark.sql.functions import broadcast
    df1.join(broadcast(df2), df1['id'] == df2['id'])
    
  • Repartitioning Data:
    1
    df.repartition(10)
    
  • Coalescing Partitions:
    1
    df.coalesce(1)
    

9. Debugging and Error Handling

  • Showing Execution Plan:
    1
    df.explain()
    

Data Reading Exception Handling

  • Catching Exceptions during Read: Implement try-except blocks during data reading operations.

10. Working with Complex Data Types

  • Exploding Arrays:
    1
    2
    from pyspark.sql.functions import explode
    df.select(explode(df['array_column']))
    
  • Handling Struct Fields:
    1
    df.select('struct_column.field1', 'struct_column.field2')
    

11. Custom Transformations with UDFs

  • Defining a UDF:
    1
    2
    3
    4
    5
    6
    from pyspark.sql.functions import udf
    from pyspark.sql.types import StringType
    
    @udf('return_type')
    def my_udf(column):
        return transformation
    
  • Applying UDF on DataFrame:
    1
    df.withColumn('new_column', my_udf(df['column']))
    

12. Working with Large Text Data

  • Tokenizing Text Data:
    1
    2
    from pyspark.ml.feature import Tokenizer
    Tokenizer(inputCol='text_column', outputCol='words').transform(df)
    
  • TF-IDF on Text Data:
    1
    2
    from pyspark.ml.feature import HashingTF, IDF
    HashingTF(inputCol='words', outputCol='rawFeatures').transform(df)
    

13. Machine Learning Integration

  • Using MLlib for Predictive Modeling: Building and training machine learning models using PySpark's MLlib.
  • Model Evaluation and Tuning:
    1
    2
    from pyspark.ml.evaluation import MulticlassClassificationEvaluator
    MulticlassClassificationEvaluator().evaluate(predictions)
    

14. Stream Processing

  • Reading from a Stream:
    1
    dfStream = spark.readStream.format('source').load()
    
  • Writing to a Stream:
    1
    dfStream.writeStream.format('console').start()
    

捐赠本站(Donate)

weixin_pay
如您感觉文章有用,可扫码捐赠本站!(If the article useful, you can scan the QR code to donate))