pyspark实现ETL操作
利用PySpark处理大数据,执行数据提取、转换、加载操作,实现数据清洗、整合与存储,支持分布式计算
1. Environment Setup and SparkSession Creation
- Install PySpark:
pip install pyspark - Start a SparkSession:
1 2
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('ETL Process').getOrCreate()
2. Data Extraction
- Read Data from CSV:
1df = spark.read.csv('path/to/csv', inferSchema=True, header=True) - Read Data from JSON:
1df = spark.read.json('path/to/json') - Read Data from Parquet:
1df = spark.read.parquet('path/to/parquet') - Read Data from a Database:
1df = spark.read.format("jdbc").option("url", jdbc_url).option("dbtable", "table_name").option("user", "username").option("password", "password").load()
3. Data Transformation
- Selecting Columns:
1df.select('column1', 'column2') - Filtering Data:
1df.filter(df['column'] > value) - Adding New Columns:
1df.withColumn('new_column', df['column'] + 10) - Renaming Columns:
1df.withColumnRenamed('old_name', 'new_name') - Grouping and Aggregating Data:
1df.groupBy('column').agg({'column2': 'sum'}) - Joining DataFrames:
1df1.join(df2, df1['id'] == df2['id']) - Sorting Data:
1df.orderBy(df['column'].desc()) - Removing Duplicates:
1df.dropDuplicates()
4. Handling Missing Values
- Dropping Rows with Missing Values:
1df.na.drop() - Filling Missing Values:
1df.na.fill(value) - Replacing Values:
1df.na.replace(['old_value'], ['new_value'])
5. Data Type Conversion
- Changing Column Types:
1df.withColumn('column', df['column'].cast('new_type')) - Parsing Dates:
1 2
from pyspark.sql.functions import to_date df.withColumn('date', to_date(df['date_string']))
Advanced Data Manipulations
- Using SQL Queries:
1 2
df.createOrReplaceTempView('table') spark.sql('SELECT * FROM table WHERE column > value') - Window Functions:
1 2 3
from pyspark.sql.window import Window from pyspark.sql.functions import row_number df.withColumn('row', row_number().over(Window.partitionBy('column').orderBy('other_column'))) - Pivot Tables:
1df.groupBy('column').pivot('pivot_column').agg({'column2': 'sum'})
7. Data Loading
- Writing to CSV:
1df.write.csv('path/to/output') - Writing to JSON:
1df.write.json('path/to/output') - Writing to Parquet:
1df.write.parquet('path/to/output') - Writing to a Database:
1df.write.format("jdbc").option("url", jdbc_url).option("dbtable", "table_name").option("user", "username").option("password", "password").save()
8. Performance Tuning
- Caching Data:
1df.cache() - Broadcasting a DataFrame for Join Optimization:
1 2
from pyspark.sql.functions import broadcast df1.join(broadcast(df2), df1['id'] == df2['id']) - Repartitioning Data:
1df.repartition(10) - Coalescing Partitions:
1df.coalesce(1)
9. Debugging and Error Handling
- Showing Execution Plan:
1df.explain()
Data Reading Exception Handling
- Catching Exceptions during Read: Implement try-except blocks during data reading operations.
10. Working with Complex Data Types
- Exploding Arrays:
1 2
from pyspark.sql.functions import explode df.select(explode(df['array_column'])) - Handling Struct Fields:
1df.select('struct_column.field1', 'struct_column.field2')
11. Custom Transformations with UDFs
- Defining a UDF:
1 2 3 4 5 6
from pyspark.sql.functions import udf from pyspark.sql.types import StringType @udf('return_type') def my_udf(column): return transformation - Applying UDF on DataFrame:
1df.withColumn('new_column', my_udf(df['column']))
12. Working with Large Text Data
- Tokenizing Text Data:
1 2
from pyspark.ml.feature import Tokenizer Tokenizer(inputCol='text_column', outputCol='words').transform(df) - TF-IDF on Text Data:
1 2
from pyspark.ml.feature import HashingTF, IDF HashingTF(inputCol='words', outputCol='rawFeatures').transform(df)
13. Machine Learning Integration
- Using MLlib for Predictive Modeling: Building and training machine learning models using PySpark's MLlib.
- Model Evaluation and Tuning:
1 2
from pyspark.ml.evaluation import MulticlassClassificationEvaluator MulticlassClassificationEvaluator().evaluate(predictions)
14. Stream Processing
- Reading from a Stream:
1dfStream = spark.readStream.format('source').load() - Writing to a Stream:
1dfStream.writeStream.format('console').start()
捐赠本站(Donate)

如您感觉文章有用,可扫码捐赠本站!(If the article useful, you can scan the QR code to donate))