pyspark实现ETL操作
利用PySpark处理大数据,执行数据提取、转换、加载操作,实现数据清洗、整合与存储,支持分布式计算
1. Environment Setup and SparkSession Creation
- Install PySpark:
pip install pyspark
- Start a SparkSession:
1 2
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('ETL Process').getOrCreate()
2. Data Extraction
- Read Data from CSV:
1
df = spark.read.csv('path/to/csv', inferSchema=True, header=True)
- Read Data from JSON:
1
df = spark.read.json('path/to/json')
- Read Data from Parquet:
1
df = spark.read.parquet('path/to/parquet')
- Read Data from a Database:
1
df = spark.read.format("jdbc").option("url", jdbc_url).option("dbtable", "table_name").option("user", "username").option("password", "password").load()
3. Data Transformation
- Selecting Columns:
1
df.select('column1', 'column2')
- Filtering Data:
1
df.filter(df['column'] > value)
- Adding New Columns:
1
df.withColumn('new_column', df['column'] + 10)
- Renaming Columns:
1
df.withColumnRenamed('old_name', 'new_name')
- Grouping and Aggregating Data:
1
df.groupBy('column').agg({'column2': 'sum'})
- Joining DataFrames:
1
df1.join(df2, df1['id'] == df2['id'])
- Sorting Data:
1
df.orderBy(df['column'].desc())
- Removing Duplicates:
1
df.dropDuplicates()
4. Handling Missing Values
- Dropping Rows with Missing Values:
1
df.na.drop()
- Filling Missing Values:
1
df.na.fill(value)
- Replacing Values:
1
df.na.replace(['old_value'], ['new_value'])
5. Data Type Conversion
- Changing Column Types:
1
df.withColumn('column', df['column'].cast('new_type'))
- Parsing Dates:
1 2
from pyspark.sql.functions import to_date df.withColumn('date', to_date(df['date_string']))
Advanced Data Manipulations
- Using SQL Queries:
1 2
df.createOrReplaceTempView('table') spark.sql('SELECT * FROM table WHERE column > value')
- Window Functions:
1 2 3
from pyspark.sql.window import Window from pyspark.sql.functions import row_number df.withColumn('row', row_number().over(Window.partitionBy('column').orderBy('other_column')))
- Pivot Tables:
1
df.groupBy('column').pivot('pivot_column').agg({'column2': 'sum'})
7. Data Loading
- Writing to CSV:
1
df.write.csv('path/to/output')
- Writing to JSON:
1
df.write.json('path/to/output')
- Writing to Parquet:
1
df.write.parquet('path/to/output')
- Writing to a Database:
1
df.write.format("jdbc").option("url", jdbc_url).option("dbtable", "table_name").option("user", "username").option("password", "password").save()
8. Performance Tuning
- Caching Data:
1
df.cache()
- Broadcasting a DataFrame for Join Optimization:
1 2
from pyspark.sql.functions import broadcast df1.join(broadcast(df2), df1['id'] == df2['id'])
- Repartitioning Data:
1
df.repartition(10)
- Coalescing Partitions:
1
df.coalesce(1)
9. Debugging and Error Handling
- Showing Execution Plan:
1
df.explain()
Data Reading Exception Handling
- Catching Exceptions during Read: Implement try-except blocks during data reading operations.
10. Working with Complex Data Types
- Exploding Arrays:
1 2
from pyspark.sql.functions import explode df.select(explode(df['array_column']))
- Handling Struct Fields:
1
df.select('struct_column.field1', 'struct_column.field2')
11. Custom Transformations with UDFs
- Defining a UDF:
1 2 3 4 5 6
from pyspark.sql.functions import udf from pyspark.sql.types import StringType @udf('return_type') def my_udf(column): return transformation
- Applying UDF on DataFrame:
1
df.withColumn('new_column', my_udf(df['column']))
12. Working with Large Text Data
- Tokenizing Text Data:
1 2
from pyspark.ml.feature import Tokenizer Tokenizer(inputCol='text_column', outputCol='words').transform(df)
- TF-IDF on Text Data:
1 2
from pyspark.ml.feature import HashingTF, IDF HashingTF(inputCol='words', outputCol='rawFeatures').transform(df)
13. Machine Learning Integration
- Using MLlib for Predictive Modeling: Building and training machine learning models using PySpark's MLlib.
- Model Evaluation and Tuning:
1 2
from pyspark.ml.evaluation import MulticlassClassificationEvaluator MulticlassClassificationEvaluator().evaluate(predictions)
14. Stream Processing
- Reading from a Stream:
1
dfStream = spark.readStream.format('source').load()
- Writing to a Stream:
1
dfStream.writeStream.format('console').start()
捐赠本站(Donate)
如您感觉文章有用,可扫码捐赠本站!(If the article useful, you can scan the QR code to donate))